Article Pédagogique Multimedia

O. Thual, APM-INPT thu-emiobs (2003)

Émission d'ondes par un obstacle oscillant ou mobile

Objectif:

Ondes $u(\underline{x}, t) = u_m e^{i\underline{k}\cdot\underline{x} - i\omega_i t}$ avec $\omega_i = \Omega_i(\underline{k})$.

Obstacle oscillant à une pulsation ω_0 et/ou animé d'une vitesse $-\underline{V}$.

1 Obstacle oscillant en milieu 1D

2 Obstacle oscillant en milieu 2D

3 Obstacle oscillant ou mobile

1 Obstacle oscillant en milieu 1D

Obstacle oscillant à la pulsation ω_0 dans un milieu 1D.

Seules les ondes de pulsation $\omega_0 = \Omega(k_1)$ et de vitesse de groupe $c_g(k_1) > 0$ sont émises vers la droite (idem pour la gauche).

1.1 Chemins dans le plan complexe

- 1.2 Limite des faibles dissipations et sillage lointain
- **1.3 Exemple des ondes sonores**

1.1 Chemins dans le plan complexe

Équation de Korteweg de Vries linéaire forcée :

$$\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = f(x) \ e^{-i \,\omega_0 \, t}$$

où $f(x) e^{-i\omega_0 t}$ modélise le forçage exercé par un obstacle oscillant. Relation de dispersion des ondes $u(x,t) = u_m e^{i k_1 x - i \omega t}$:

$$\omega = \Omega(k_1) = \alpha \ k_1 - \beta \ k_1^3$$

Convention $\omega \ge 0$ dans la mesure où :

les ondes (u_m, k_1, ω) et $(u_m^*, -k_1, -\omega)$ ont la même partie réelle.

On suppose que f(x) admet la décomposition de Fourier spatiale

$$f(x) = \int_{\mathbb{R}} \widehat{f}(k_1) \ e^{i \, k_1 \, x} \, dk_1 \quad \iff \quad \widehat{f}(k_1) = \frac{1}{2 \, \pi} \int_{\mathbb{R}} f(x) \ e^{-i \, k_1 \, x} \, dx \ .$$

Cherchons alors des solutions sous la forme

$$u(x,t) = \iint_{\mathbb{R}^2} \widehat{\widehat{u}}(k_1,\omega) \ e^{i \, k_1 \, x - i \, \omega \, t} \ dk_1 \ d\omega \ .$$

Comme
$$e^{-i\omega_0 t} = \int_{\mathbb{R}} \delta(\omega - \omega_0) e^{-i\omega t} d\omega$$
, on a :
 $i[-\omega + \Omega(k_1)] \,\widehat{\widehat{u}}(k_1, \omega) = \widehat{f}(k_1) \,\delta(\omega - \omega_0)$.

On est alors tenté de chercher une solution particulière :

$$u(x,t) = \frac{1}{i} e^{-i\omega_0 t} \int_{\mathbb{R}} \frac{\widehat{f}(k_1)}{-\omega_0 + \Omega(k_1)} e^{ik_1 x} dk_1$$

et d'y ajouter une superposition d'ondes "libres" $u_m e^{i k_1 x - i \Omega(k_1) t}$.

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

On essaie alors un chemin complexe \mathcal{C} de $-\infty$ à $+\infty$:

1.2 Limite des faibles dissipations et sillage lointain

Terme $-\epsilon u$ pour modéliser une faible dissipation des ondes :

$$\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = -\epsilon \ u + f(x) \ e^{-i\omega_0 t}$$

Les solutions sont données par la relation

$$u(x,t) = \frac{1}{i} e^{-i\omega_0 t} \int_{\mathbb{R}} \frac{\widehat{f}(k_1)}{-\omega_0 + \Omega(k_1) - i\epsilon} e^{ik_1 x} dk_1$$

plus superposition d'ondes amorties de la forme $u_m e^{-\epsilon t} e^{i k_1 x - i \Omega(k_1) t}$

Les pôles $\kappa_n \in \mathcal{C}$ avec $n \in I$, solutions de $\Omega(\kappa_n) = \omega_0 + i\epsilon$,

$$\kappa_n = k_n + i \epsilon / c_g(k_n) + O(\epsilon^2), \qquad n \in I.$$

On voit que si la vitesse de groupe

- Si $c_g(k_n) = \Omega'(k_n) > 0$ est positive : pôles $n \in I_+$ au-dessus
- Si $c_g(k_n) = \Omega'(k_n) < 0$ est positive : pôles $n \in I_-$ au-dessous

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

1.3 Exemple des ondes sonores

Équation des ondes 1D forcée :

$$\frac{\partial^2 u}{\partial t^2} - c^2 \, \frac{\partial^2 u}{\partial x^2} = f(x) \, e^{-i \,\omega_0 \, t}$$

Chemin que lconque dans le plan complexe ${ I\!\! C}$ reliant $-\infty$ et $+\infty$:

$$u(x,t) = e^{-i\omega_0 t} \int_{\mathcal{C}} \frac{\widehat{f}(k_1)}{-\omega_0^2 + c^2 k_1^2} e^{ik_1 x} dk_1$$

On a donc $u(x,t) = e^{-i\omega_0 t} [U_+(x) + U_-(x)]$ avec :

$$U_{\pm}(x) = \mp \frac{1}{2\omega_0 c} \int_{\mathcal{C}} \frac{\widehat{f}(k_1)}{k_1 \pm k_0} e^{i k_1 x} dk_1 \quad \text{et} \quad k_0 = \frac{\omega_0}{c}$$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

 \mathcal{C} passe au-dessus ou en-dessous des pôles $k_1 = \pm k_0$: différences

$$\mp \frac{i\pi}{\omega_0 c} \widehat{f}(\pm k_0) e^{\pm i k_0 x - i \omega_0 t}$$

On considérer un forçage en $f(x) e^{\epsilon t - i \omega_0 t}$ avec $\epsilon / \omega_0 \ll 1$ très petit.

$$u(x,t) = e^{-i\omega_0 t} \int_{\mathbb{R}} \frac{\hat{f}(k_1)}{-(\omega_0 - i\epsilon)^2 + c^2 k_1^2} e^{ik_1 x} dk_1$$

En faisant tendre ϵ vers zéro et loin de l'obstacle (x grand), une déformation des contours dans le plan complexe montre que

$$U_{\pm}(x) \sim \mp \frac{i\pi}{\omega_0 c} f(\pm k_0) e^{\pm i k_0 x} \qquad \text{pour } \pm x \to \infty$$

et $U_{\pm}(x) \sim 0 \qquad \text{pour } \mp x \to \infty$

L'onde $k_0 = \omega_0/c$ de vitesse de phase $c_{\varphi} = c > 0$ est observée à droite. L'onde $-k_0$ de vitesse de phase $c_{\varphi} = -c < 0$ est observée à gauche.

2 Obstacle oscillant en milieu 2D

Sillage lointain d'un obsc
tacle oscillant à la pulsation ω_0 dans un milieu 2D.

Un point <u>x</u> voit passer les ondes de vecteur d'onde <u>k</u> telles que $\omega_0 = \Omega(\underline{k})$ et telle que la vitesse de groupe $\underline{c}_g(\underline{k})$ est paralèlle et dans le même sens que <u>x</u>.

- 2.1 Exemple de la croix de Saint-André
- 2.2 Cas d'une relation de dispersion quelconque
- 2.3 Lignes de phase et caustiques

2.1 Exemple de la croix de Saint-André

Fréquence de "Brunt-Väisälä" $N = \sqrt{-\frac{g}{\rho_r} \frac{d\rho_0(z)}{dz}}$ constante.

Ondes de gravité internes $u(\underline{x}, t) = u_m e^{i \underline{k} \cdot \underline{x} - i \omega t}$ dans le cadre de "l'approximation de Boussinesq" avec la relation de dispersion

 $\omega = \Omega(\underline{k}) = N |\cos \theta(\underline{k})|$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

La vitesse de groupe $\underline{c}_{g}(\underline{k})$ d'un paquet d'ondes est définie par :

$$\underline{c}_g(\underline{k}) = \underline{\operatorname{grad}}_k \,\Omega(\underline{k}) = \left(\frac{\partial\Omega}{\partial k_1}, \frac{\partial\Omega}{\partial k_2}, \frac{\partial\Omega}{\partial k_3}\right)$$

La pulsation $\Omega(\underline{k}) = N |\cos \theta|$ est indépendante du module k. On a donc : $\underline{c}_g(\underline{k}) \cdot \underline{c}_{\varphi}(\underline{k}) = 0$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

Pour expliquer ces observations, forçage $f(\underline{x})e^{-i\omega_0 t}$:

$$f(\underline{x}) = \iint_{\mathbb{R}^2} \widehat{f}(\underline{k}) e^{i\underline{k}\cdot\underline{x}} dk_1 dk_3 .$$

Solutions de la forme $u(\underline{x}, t) = e^{-i \omega_0 t} U(\underline{x})$ avec

$$U(\underline{x}) = \lim_{\epsilon \to 0} \int \int_{\mathbb{R}^2} \frac{\widehat{f}(\underline{k})}{-(\omega_0 - i\,\epsilon)^2 + \Omega^2(\underline{k})} e^{i\,\underline{k}\cdot\underline{x}} \, dk_1 \, dk_3$$
$$= \lim_{\epsilon \to 0} \int_0^\infty \left[\int_0^{2\pi} \frac{\widehat{f}(k\cos\theta, k\sin\theta)}{-(\omega_0 - i\,\epsilon)^2 + N^2 \, \cos^2\theta} e^{i\,k(x\,\cos\theta + z\,\sin\theta)} \, d\theta \right] \, k \, dk \, .$$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

2.2 Cas d'une relation de dispersion quelconque

Relation de dispersion 2D que lconque $\omega = \Omega(\underline{k})$:

$$u(\underline{x},t) = \frac{1}{i} e^{-i\,\omega_0\,t} \int \int_S \frac{\widehat{f}(\underline{k})}{-\omega_0 + \Omega(\underline{k})} \, e^{i\,\underline{k}\cdot\underline{x}} \, dk_1 \, dk_2$$

où S est une surface dans \mathbb{C}^2 qui évite la courbe $\underline{k}(s)$ avec $s \in I$ coordonée curviligne définie par $\Omega[\underline{k}(s)] = \omega_0$.

Suivant la position de la surface complexe, on différe de

$$2\pi \int_J \frac{\widehat{f}[\underline{k}(s)]}{c_g[\underline{k}(s)]} \ e^{i \, \underline{k}(s) \cdot \underline{x} - i \, \omega_0 \, t} \ ds$$

où $J \in I$ et $c_g = \|\underline{c}_g\|$. On choisit le paramétrage curviligne de telle sorte que $(\underline{c}_g, \frac{d}{ds}\underline{k})$ forment un repère (orthogonal) direct. On ajoute ensuite les ondes libres de la forme $u_m e^{i\underline{k}\cdot\underline{x}-i\Omega(\underline{k})t}$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

Dissipation infinitésimale

En déformant la surface S dans la direction complexe $i \kappa \underline{d}$:

$$u(\underline{x},t) \sim 2\pi \int_{J_{\underline{d}}} \frac{\widehat{f}[\underline{k}(s)]}{c_g[\underline{k}(s)]} \ e^{i \, \underline{k}(s) \cdot \underline{x} - i \, \omega_0 \, t} \ ds$$

où $J_{\underline{d}} \in I$ associé à la direction \underline{d} décrit les $\underline{k}(s)$ tels que $\underline{c}_g(\underline{k}) \cdot \underline{d} > 0$ Méthode de la phase stationnaire

Comportement asymptotique de $E(X)=\int_{J_{\underline{d}}}g(s)\exp[i\,\psi(s)\,X]\;ds$ pour X grand : voisinage des points où la phase ψ est extrémale

$$u\left(X\underline{d},t\right) \sim 2\pi \sum_{s_n \in I_{\underline{d}}} \sqrt{\frac{2\pi}{|K(s_n)|X|}} \frac{\widehat{f}[\underline{k}(s_n)]}{c_g[\underline{k}(s_n)]} e^{i X \underline{k}(s_n) \cdot \underline{d} - i \,\omega_0 \, t + i\mu(s_n)\pi/4}$$

où K(s) est la coubure de la courbe $\underline{k}(s)$ et $\mu(s)$ son signe. $I_{\underline{d}}$: indice n tels que $\underline{k}(s_n)$ parallèle à \underline{d} et dans le même sens.

2.3 Lignes de phase et caustiques

Lignes de constante phase ϕ de la solution $u(\underline{x}, t)$:

 $\mathcal{L}_{\phi} = \left\{ \underline{x} : \Omega(\underline{k}) = \omega_0, \ \underline{k} \cdot \underline{x} = \phi, \ \underline{c}_g(\underline{k}) \wedge \underline{x} = \underline{0} \quad \text{et} \quad \underline{c}_g(\underline{k}) \cdot \underline{x} > 0 \right\}$

On paramètre par l'angle θ défini par $\underline{k} = k (\cos \theta \underline{e}^{(1)} + \sin \theta \underline{e}^{(2)}).$

Soit $\underline{k} = \underline{\mathcal{K}}(\theta)$ une branche de solutions de $\Omega(\underline{k}) = \omega_0$:

$$\underline{x}(\theta) = \frac{\phi}{\underline{\mathcal{K}}(\theta) \cdot \underline{c}_g[\underline{\mathcal{K}}(\theta)]} \ \underline{c}_g[\underline{\mathcal{K}}(\theta)]$$

Sillage d'un bateau en eaux profondes

Relation de dispersion $\Omega(\underline{k}) = \sqrt{g k} - V k_1$. Courbe paramétrée :

$$x(\theta) = \frac{V^2 \phi}{g} \cos \theta (1 + \sin^2 \theta)$$
 et $y(\theta) = \frac{V^2 \phi}{g} \cos^2 \theta \sin \theta$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

3 Obstacle oscillant ou mobile

Pulsation ω_0 et/ou vitesse $-\underline{V}$

Relation de dispersion du milieu est $\omega_i = \Omega_i(\underline{k})$

Repère lié à l'obstacle : $\omega = \Omega(\underline{k}) = \Omega_i(\underline{k}) + \underline{V} \cdot \underline{k}$.

3.1 Changement de variable dans le repère mobile

3.2 Exemple des ondes sonores

3.3 Exemple des ondes de surface en milieu profond

3.1 Changement de variable dans le repère mobile

Équation des ondes bidimensionnelle

$$\frac{\partial^2 u}{\partial t^2} - c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

Relation de dispersion $\omega = \Omega(\underline{k}) = c \ k$ avec convention $\omega \ge 0$

c est la vitesse du son ou la vitesse $\sqrt{g h_0}$ en milieu peu peu profond. On considère alors un obstacle : oscillation ω_0 et vitesse $-\underline{V}$ **Repère fixe :**

On note $\widetilde{u}(\underline{\widetilde{x}}, \widetilde{t})$ le champ d'ondes solution de

$$\frac{\partial^2 \widetilde{u}}{\partial \widetilde{t}^2} - c^2 \ \widetilde{\Delta} \widetilde{u} = f(\underline{\widetilde{x}} + \underline{V} \ \widetilde{t}) \ e^{-i\omega_0 \widetilde{t}} ,$$
$$\frac{\partial^2}{\partial \widetilde{t}^2} + \frac{\partial^2}{\partial \widetilde{t}^2}$$

avec $\widetilde{\Delta} = \frac{\partial^2}{\partial \widetilde{x}^2} + \frac{\partial^2}{\partial \widetilde{y}^2}.$

Repère mobile de l'obstacle mobile :

Changement de variable $(\underline{x}, t) = (\underline{\widetilde{x}} + \underline{V} \ \widetilde{t}, \widetilde{t})$ qui entraı̂ne

$$\left(\frac{\partial}{\partial t} + \underline{V} \cdot \underline{\operatorname{grad}}\right)^2 u - c^2 \,\Delta u = f(\underline{x}) \, e^{-i\,\omega_0 \,t}$$

Système d'axes (x, y) tel $\underline{V} = V \underline{e}^{(1)}$:

$$\left(\frac{\partial}{\partial t} + V\frac{\partial}{\partial x}\right)^2 u - c^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u = f(x, y) e^{-i\omega_0 t}$$

Nouvelle relation de dispersion $(\omega + V k_1)^2 = c^2 k^2$ qui conduit à

• $\omega = \Omega_+(\underline{k}) = V k_1 + c k \text{ pour } k_1 \leq -(c/V) k$

•
$$\omega = \Omega_{-}(\underline{k}) = V k_1 - c k \text{ pour } k_1 \le (c/V) k$$

avec la convention $\omega \geq 0$.

Dans le cas général

L relations "intrinsèques" $\omega_i = \Omega_{i,l}(\underline{k})$ pour $\widetilde{u}(\widetilde{x},\widetilde{y}) = u_m \ e^{i\underline{k}\cdot\widetilde{\underline{x}}-i\,\omega_i\,\widetilde{t}}$

L relations de dispersion $\omega = \Omega_l(\underline{k}) = \Omega_{i,l}(\underline{k}) + \underline{V} \cdot \underline{k}$ pour $u(x, y) = u_m \ e^{i \underline{k} \cdot \underline{x} - i \, \omega \, t}$ en ayant posé $(\underline{x}, t) = (\underline{\widetilde{x}} + \underline{V} \, \widetilde{t}, \widetilde{t})$

On applique la convention $\omega \ge 0$ mais pas la convention $\omega_i \ge 0$

3.2 Exemple des ondes sonores

Obstacle oscillant (ω_0) et mobile ($-\underline{V} = -V \underline{e}^{(1)}$)

	< 1	> 1
Mach $M = V/c$	sub-sonique	supersonique
Froude $F = V/\sqrt{gh_0}$	sous-critique	super-critique

Relation de dispersion dans le repère mobile :

 $\omega = \Omega_+(\underline{k}) = c \, k + V \, k_1$ et $\omega = \Omega_-(\underline{k}) = -c \, k + V \, k_1$

On adopte la convention $\omega \ge 0$: $\Omega_+(\underline{k}) \ge 0$ et $\Omega_-(\underline{k}) \ge 0$

Dans le cas unidimensionnel :

 $\omega/c = W_+(k_1) = k + M k_1$ et $\omega/c = W_-(k_1) = -k + M k_1$

Courbes $\omega = \omega_0$

• Cas subsonique : c'est est une ellipse, l'obstacle rayonne dans toutes les directions

• Cas supersonique : deux hyperboles, le son est émis dans un secteur d'angle $\alpha_s(M) = \arcsin(1/M)$ (angle de Mach)

Courbe limite $\omega_0 = 0$

• Cas subsonique : aucune émission d'onde. L'équation stationnaire

$$(c^2 - V^2) \frac{\partial^2 u}{\partial x^2} + c^2 \frac{\partial^2 u}{\partial y^2} = -f(x, y) .$$

est elliptique et se ramène à $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -f$

• Cas supersonique : deux directions faisant un angle $\alpha(M) = \arcsin(1/M)$. L'équation stationnaire

$$(c^2 - V^2) \frac{\partial^2 u}{\partial x^2} - c^2 \frac{\partial^2 u}{\partial y^2} = -f(x, y) .$$

est hyperbolique et se ramène à $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

3.3 Ondes de surface en milieu profond

Profondeur infinie : $\omega = \Omega_i(\underline{k}) = \sqrt{g k}$ avec la convention $\omega \ge 0$

Relations de dispersion dans le repère mobile :

 $\omega = \Omega_+(\underline{k}) = \sqrt{g\,k} + V\,k_1 \qquad \text{et} \qquad \omega = \Omega_-(\underline{k}) = -\sqrt{g\,k} + V\,k_1$

On peut appliquer la convention $\omega \ge 0$: $\Omega_+(\underline{k}) \ge 0$ et $\Omega_-(\underline{k}) \ge 0$

Cas unidimensionnel :

 $\omega = \Omega_+(k_1) = \sqrt{g \, k} + V \, k_1 \qquad \text{et} \qquad \omega = \Omega_-(k_1) = -\sqrt{g \, k} + V \, k_1$

En posant $K_1 = \frac{V^2}{g}k_1$ et A = g/V:

 $\omega/A = W_+(K_1) = \sqrt{K} + K_1$ et $\omega/A = W_-(K_1) = -\sqrt{K} + K_1$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

Cas bidimensionnel :

 $\omega = \Omega_+(k_1, k_2) = \sqrt{g \, k} + V \, k_1$ et $\omega = \Omega_-(k_1, k_2) = -\sqrt{g \, k} + V \, k_1$ En posant $K_1 = \frac{V^2}{g} k_1$ et $K_2 = \frac{V^2}{g} k_2$,

 $\omega/A = W_+(K_1, K_2) = \sqrt{K} + K_1 \text{ et } \omega/A = W_-(K_1, K_2) = -\sqrt{K} + K_1$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

- Les ondes émises dans le cas $\omega_0 = 0$ sont stationnaires.
- Les ondes émises dans le cas ω_0 non nul sont propagatives.

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

Conclusion

Paquets d'ondes émis par une obstacle : ondes de vecteurs d'onde <u>k</u> oscillant à la même pulsation ω_0 et se propageant avec leur vitesse de groupe $\underline{c}_g(\underline{k})$

Cas immobile : $\omega_0 = \Omega_i(\underline{k})$

Cas de la vitesse $-\underline{V}$: $\Omega(\underline{k}) = \Omega_i(\underline{k}) + \underline{V} \cdot \underline{k}$.

FORMULAIRE

OBSTACLE OSCILLANT EN MILIEU 1D KdV linéaire forcée

$$\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = f(x) \ e^{-i \omega_0 t} \implies \omega = \Omega(k_1) = \alpha \ k_1 - \beta \ k_1^3$$
$$u(x,t) = \frac{1}{i} \ e^{-i \omega_0 t} \ \lim_{\epsilon \to 0} \int_{I\!\!R} \frac{\widehat{f}(k_1)}{-\omega_0 + \Omega(k_1) - i \ \epsilon} \ e^{i \ k_1 \ x} \ dk_1$$

Équation des ondes forcée

$$\frac{\partial^2 u}{\partial t^2} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = f(x) e^{-i\omega_0 t} \implies \omega = \Omega(k_1) = \alpha |k_1| = \alpha k$$
$$u(x,t) = e^{-i\omega_0 t} \lim_{\epsilon \to 0} \int_{\mathbb{R}} \frac{\widehat{f}(k_1)}{-(\omega_0 - i\epsilon)^2 + c^2 k_1^2} e^{ik_1 x} dk_1$$

Sillage lointain

$$u(x,t) \sim 2\pi \sum_{n \in I_+} \frac{\widehat{f}(k_n)}{c_g(k_n)} e^{i k_n x - i \omega_0 t} \qquad \text{pour } x \to \infty$$

avec k_n tels que $\Omega(k_n) = \omega_0$ et $c_g(k_n) = \Omega'(k_n) > 0$.

OBSTACLE OSCILLANT EN MILIEU 2D

Vitesse de groupe

$$\underline{c}_g(\underline{k}) = \underline{\operatorname{grad}}_k \,\Omega(\underline{k}) = \left(\frac{\partial\Omega}{\partial k_1}, \frac{\partial\Omega}{\partial k_2}, \frac{\partial\Omega}{\partial k_3}\right)$$

Ondes de gravité interne

Angle θ_0 solution de : $\omega_0 = N \cos \theta_0$

Croix de Saint-André : angle θ_0 avec la verticale.

Relation de dispersion quelconque

$$u(\underline{x},t) = \frac{1}{i} e^{-i\omega_0 t} \lim_{\epsilon \to 0} \iint_{\mathbb{R}^2} \frac{\widehat{f(\underline{k})}}{-(\omega_0 - i\epsilon) + \Omega(\underline{k})} e^{i\underline{k}\cdot\underline{x}} dk_1 dk_2$$

Sillage lointain

$$u(\underline{x},t) \sim 2\pi \int_{J_{\underline{d}}} \frac{\widehat{f}[\underline{k}(s)]}{c_g[\underline{k}(s)]} \ e^{i \ \underline{k}(s) \cdot \underline{x} - i \ \omega_0 \ t} \ ds$$

avec $\underline{k}(s)$ tels que $\Omega[\underline{k}(s)] = \omega_0$ et $\underline{c}_g[\underline{k}(s)] \cdot \underline{d} > 0$

$$u\left(X\underline{d},t\right) \sim 2\pi \sum_{s_n \in I_{\underline{d}}} \sqrt{\frac{2\pi}{|K(s_n)|X|}} \frac{\widehat{f}[\underline{k}(s_n)]}{c_g[\underline{k}(s_n)]} e^{i X \underline{k}(s_n) \cdot \underline{d} - i \,\omega_0 \, t + i\mu(s_n)\pi/4}$$

avec $\underline{k}(s_n)//\underline{d}$, K(s) la courbure de $\underline{k}(s)$ et $\mu(s) = \pm 1$.

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006

Lignes isophases

$$\mathcal{L}_{\phi} = \left\{ \underline{x} : \Omega(\underline{k}) = \omega_0, \ \underline{k} \cdot \underline{x} = \phi, \ \underline{c}_g(\underline{k}) \wedge \underline{x} = \underline{0} \quad \text{et} \quad \underline{c}_g(\underline{k}) \cdot \underline{x} > 0 \right\}$$

Paramétrage en θ : $\underline{x}(\theta) = \frac{\phi}{\underline{\mathcal{K}}(\theta) \cdot \underline{c}_g[\underline{\mathcal{K}}(\theta)]} \underline{c}_g[\underline{\mathcal{K}}(\theta)]$

avec $\underline{\mathcal{K}}(\theta)$ tel que $\Omega[\underline{\mathcal{K}}(\theta)] = \omega_0$.

OBSTACLE OSCILLANT OU MOBILE

Changement de relation de dispersion

$$\omega_i = \Omega_i(\underline{k}) \implies \omega = \Omega(\underline{k}) = \Omega_i(\underline{k}) + \underline{V} \cdot \underline{k}$$

Équation de ondes sonores

$$\left(\frac{\partial}{\partial t} + V\frac{\partial}{\partial x}\right)^2 u - c^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u = f(x, y) e^{-i\omega_0 t}$$

$$\begin{split} &\omega = \Omega_+(\underline{k}) = c\,k + V\,k_1 \quad \text{ et } \quad \omega = \Omega_-(\underline{k}) = -c\,k + V\,k_1 \text{ avec } \omega \geq 0\\ &\text{Cas subsonique } M = \frac{V}{c} < 1 \text{ : sillage occupant tout l'espace}\\ &\text{Cas supersonique } M = \frac{V}{c} > 1 \text{ : secteur de demi-angle}\\ &\alpha_s(M) = \arcsin 1/M \end{split}$$

Ondes de surface en milieu profond

$$\omega = \Omega_{+}(\underline{k}) = \sqrt{g \, k} + V \, k_{1} \quad \text{et} \quad \omega = \Omega_{-}(\underline{k}) = -\sqrt{g \, k} + V \, k_{1}$$

avec $\omega \ge 0$
Cas $\omega_{0} = 0$: secteur de demi-angle $\beta_{s} = \arcsin(1/3) \sim 19.5^{\circ}$

APM-INPT thu-emiobs (2003), O. Thual December 14, 2006