QUESTIONNAIRES À CHOIX MULTIPLES

QCM 0.1 Obstacle oscillant en milieu 1D

- 1) Le sillage lointain d'un obstacle immobile ($\underline{V} = \underline{0}$) oscillant à la pulsation ω_0 dans un milieu de relation de dispersion $\omega = \Omega(k_1)$ est caractérisé par
 - A toutes les ondes de vecteur d'onde $k_1 = k_n$ avec $\Omega(k_n) = \omega_0$ quelque soit le signe de leur vitesse de groupe
 - B toutes les ondes de vecteur d'onde k_1 telles que $c_g(k_1) > 0$
 - C toutes les ondes de vecteur d'onde $k_1 = k_n$ avec $\Omega(k_n) = \omega_0$ avec $c_q(k_n) > 0$ à droite de l'obstacle et $c_q(k_n) < 0$ à gauche.
- 2) Pour l'expression du sillage d'un obsctacle oscillant, une déformation du chemin d'intégration \mathcal{C} asymptotiquement proche des extrémités de la droite réelle de l'intégrande $\widehat{f}(k_1)/[\omega_0 \Omega(k_1)]$
 - A ne change pas l'expression de la solution lorsque la déformation croise un pôle de l'intégrande
 - B ajoute ou retranche des ondes pulsant à la pulsation ω_0
 - C fait tendre la solution vers zéro lorsque le chemin s'écarte trop de l'axe réel.

QCM 0.2 Obstacle oscillant en milieu 2D

- 1) La croix de Saint-André émise par un obstacle oscillant à la pulsation ω_0 dans un milieu stratifié en densité de fréquence de Brunt-Väisälä N
 - A fait un angle θ_0 avec l'axe vertical avec $\omega_0 = N \cos \theta_0$
 - B fait un angle θ_0 avec le plan horizontal avec $\omega_0 = N \cos \theta_0$
 - C fait un angle θ_0 avec l'axe vertical avec $\omega_0 = N \sin \theta_0$
- 2) La direction des vecteurs d'ondes de la croix de Saint-André émise par un obstacle oscillant à la pulsation ω_0 dans un milieu stratifié en densité
 - A fait un angle θ_0 avec l'axe vertical avec $\omega_0 = N \cos \theta_0$
 - B Fait un angle θ_0 avec le plan horizontal avec $\omega_0 = N \cos \theta_0$
 - C fait un angle θ_0 avec l'axe vertical avec $\omega_0 = N \sin \theta_0$
- 3) Les vecteurs d'onde \underline{k} observés en un point \underline{x} du sillage lointain d'un obstacle oscillant

- A sont parallèles à \underline{x}
- B sont tels que $\underline{c}_q(\underline{k})$ est parallèle à \underline{x}
- C sont tels que $\underline{c}_q(\underline{k})$ est perpendiculaire à \underline{x}

QCM 0.3 Obstacle oscillant et mobile

- 1) Dans un milieu sonore de vitesse du son c, le sillage lointain d'un obstacle mobile à la vitesse -V et oscillant à la pulsation $\omega_0 > 0$
 - A occupe un secteur de demi-angle $\arcsin(1/3)$
 - B occupe un secteur de demi-angle $\alpha_s(M)$ dans le cas supersonique M=V/c>1
 - C occupe tout l'espace dans le cas supersonique M = V/c > 1
- 2) Dans un fluide à surface libre infiniment profond, le sillage lointain d'un obstacle mobile à la vitesse -V et oscillant à la pulsation $\omega_0 = 0$
 - A occupe un secteur de demi-angle $\arcsin(1/3)$
 - B occupe deux demi-droites dont l'angle varie avec V
 - C occupe tout l'espace
- 3) Dans un fluide à surface libre de petite profondeur h, le sillage lointain d'un obstacle mobile à la vitesse -V et oscillant à la pulsation $\omega_0 = 0$
 - A occupe un secteur de demi-angle $\arcsin(1/3)$
 - B occupe deux demi-droites dont l'angle varie avec V
 - C occupe tout l'espace dans le cas super-critique $F = V/\sqrt{gh} > 1$.