$Article\ P\'edagogique\ Multimedia$

O. Thual, APM-INPT thu-surfli (2003)

Ondes de surface linéaires 1D, hyperboliques ou dispersives

Objectif : étudier les ondes linéaires d'un écoulement à surface libre dans le cas simple où le fond est plat et où l'on ne s'intéresse qu'à une seule direction horizontale.

- 1 Classifications des sytèmes linéaires 1D
- 2 Ondes de surface linéaires et hyperboliques
- 3 Ondes de surface linéaires et dispersives

1 Classifications des sytèmes linéaires 1D

Équations aux dérivées partielles (EDP) linéaires à coefficients constants pour deux variables notées t et x.

Première classification via la relation de dispersion $s = \Sigma(k) - i \Omega(k)$ des solutions $e^{i k x + s t}$. Systèmes amortis, instables ou ondulaires.

Deuxième classification via l'existence de caractéristiques. Forme $\frac{\partial J_n}{\partial t} + \lambda_n \frac{\partial J_n}{\partial x} = L(J_1, ..., J_N)$ pour n = 1, ..., N avec λ_n réels pour les systèmes hyperboliques.

- 1.1 Systèmes 1D du premier ordre
- 1.2 Classification par les relations de dispersion
- 1.3 Classification par l'existence de caractéristiques
- 1.4 Application des classifications à des exemples

1.1 Systèmes 1D du premier ordre

Systèmes d'équations aux dérivées partielles (EDP) sous la forme

$$\underline{\underline{A}} \, \partial_t \, \underline{U} + \underline{\underline{B}} \, \partial_x \, \underline{U} = \underline{\underline{D}} \, \underline{U}$$

avec $\underline{U}(x,t) = (U_1,...,U_N) \in \mathbb{R}^N$ et $\underline{\underline{A}}, \underline{\underline{B}}$ et $\underline{\underline{D}}$ trois matrices $N \times N$ à **coefficients constants.**

Beaucoup de systèmes linéaires utilisés pour modéliser des phénomènes physiques, en particulier issus de la mécanique des fluides, peuvent se mettre sous cette forme.

Équation	<u>A</u>	<u>B</u>	<u>D</u>
d'advection	1	c	0
des ondes	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -c \\ -c & 0 \end{pmatrix}$	_0
de KdV	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} \alpha & 0 & \beta \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $
de la chaleur	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -\kappa \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
de Saint Venant	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(egin{array}{cc} U_0 & h_0 \ g & U_0 \end{array} ight)$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
de Laplace	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
du 2^{nd} degré $\Delta \geq 0$		$\begin{pmatrix} r_{+} & 0 \\ f & a r_{-} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ d & 0 \end{pmatrix}$

Équation d'advection diffusion linéaire

$$\partial_t u + c \, \partial_x u = 0$$

Solutions de la forme $u(x,t) = u_0(x-ct)$. Advection sans déformation et à la vitesse c d'un profil initial quelconque $u_0(x)$.

Équation des ondes 1D

$$\partial_t^2 u - c^2 \, \partial_x^2 u = 0 \; .$$

Équivalente au système du premier ordre qui s'écrit

$$\partial_t u - c \partial_x v = 0$$
 et $\partial_t v - c \partial_x u = 0$.

En posant $\underline{U} = (u, v)$, forme standard avec N = 2.

Solutions de la forme $u(x,t) = u_q(x+ct) + u_d(x-ct)$.

Équation de Korteveg de Vries linéaire

$$\partial_t u + \alpha \, \partial_x u + \beta \, \partial_x^3 u = 0$$

Équivalente au système du premier ordre

$$\partial_t u + \alpha \partial_x u + \beta \partial_x w = 0$$
, $\partial_x u = v$ et $\partial_x v = w$

En posant $\underline{U} = (u, v, w)$, forme standard avec N = 3.

Équation de la chaleur 1D

$$\partial_t u = \kappa \, \partial_x^2 u$$

Équivalente au système du premier ordre

$$\partial_t u - \kappa \partial_x v = 0$$
 et $\partial_x u = v$.

Ce système modélise la diffusion de la chaleur avec le coefficient de diffusivité κ .

Équations de Saint Venant sans frottement et linéaires

$$\partial_t \widetilde{\eta} + U_0 \partial_x \widetilde{\eta} + h_0 \partial_x \widetilde{U} = 0$$

$$\partial_t \widetilde{U} + g \partial_x \widetilde{\eta} + U_0 \partial_x \widetilde{U} = 0$$

Petites oscillations d'un écoulement à surface libre de profondeur $h_0 + \widetilde{\eta}(x,t)$ et de vitesse $U_0 + \widetilde{U}(x,t)$.

Équation de Laplace

$$\partial_y^2 u + \partial_x^2 u = 0$$

Variable de temps t remplacée par variable d'espace y car c'est une équation "elliptique". Forme standard

$$\partial_y u + \partial_x v = 0$$
 et $\partial_y v - \partial_x u = 0$

Pas de forme standard pour l'équation d'Helmoltz $\partial_y^2 u + \partial_x^2 u = \zeta u$

EDP d'ordre deux en espace et en temps

$$a \partial_t^2 u + b \partial_{tx} u + c \partial_x^2 u + e \partial_t u + f \partial_x u = d u$$

où (a, b, c, e, f, d) sont des constantes.

Forme canonique des polynôme du second degré pour écrire

$$a \left[\left(\partial_t + \frac{b}{2a} \partial_x \right)^2 - \frac{b^2 - 4ac}{4a^2} \partial_x^2 \right] u + e \partial_x u + f \partial_y u = d u$$

- Si $\Delta = b^2 4ac < 0$: il n'est souvent pas possible de mettre cette équation sous la forme standard (équation d'Helmoltz)
- Si $\Delta \geq 0$: on peut poser $r_{\pm} = \frac{-b \pm \sqrt{\Delta}}{2a}$ et l'EDP se met sous la forme standard

$$(\partial_t - r_+ \partial_x) u = v$$

$$a (\partial_t - r_- \partial_x) v + e \partial_t u + f \partial_x u = d u.$$

1.2 Classification par les relations de dispersion

$$\underline{\underline{A}} \partial_t \underline{U} + \underline{\underline{B}} \partial_x \underline{U} = \underline{\underline{D}} \underline{U} .$$

Le système est invariant par les translations d'espace et de temps :

$$\underline{U}(x,t) = \operatorname{Re}\left(\underline{U}_m e^{i k x + s t}\right)$$

où k est réel, $s = \sigma - i \omega$ complexe et \underline{U}_m un vecteur complexe.

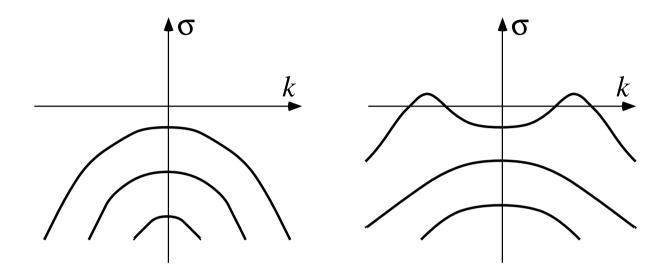
$$(s \underline{A} + i k \underline{B} - \underline{D}) \underline{U}_m = \underline{0}.$$

Solutions \underline{U}_m non triviales ssi : $\det (s \underline{A} + i k \underline{B} - \underline{D}) = 0$

Pour k donné, $M \leq N$ solutions $S_n(k)$ et $\underline{\phi}_n(k)$ avec n = 1, ..., M:

$$s = S_n(k) = \Sigma_n(k) - i \Omega_n(k)$$

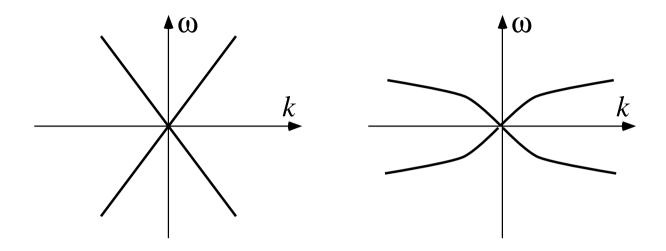
$$\left(s_n \underline{\underline{A}} + i k \underline{\underline{B}} - \underline{\underline{D}}\right) \underline{\phi}_n(k) = \underline{0}$$



 $\text{Module } |\underline{\phi}_n| \ e^{\sum_n (k) \ t} \ \text{des solutions } \underline{\phi}_n \ e^{i \ k \ x + S_n(k) \ t} = \underline{\phi}_n \ e^{i \ k \ x + \sigma \ t - i \ \omega \ t}$

- Système "amorti": pour tout (k,n) on a $\sigma = \Sigma_n(k) < 0$
- Système "instable": il existe un (k, n) avec $\sigma = \Sigma_n(k) > 0$
- Système "ondulatoire": pour tout (k, n) on a $\sigma = \Sigma_n(k) = 0$, c'est-à-dire $\sigma i \omega = S_n(k) = -i \Omega_n(k)$

Cas des systèmes ondulatoires



• Ondes "non dispersives":

la dérivée $\Omega'_n(k) = c_n$ est une constante. La fonction $\omega = \Omega_n(k)$ est donc représentée par une droite dans le plan (k, ω) .

• Ondes "dispersives":

Le graphe de cette fonction $\omega = \Omega_n(k)$ est courbe.

1.3 Classification par existence de caractéristiques

$$\underline{\underline{A}} \, \partial_t \, \underline{U} + \underline{\underline{B}} \, \partial_x \, \underline{U} = \underline{\underline{D}} \, \underline{U}$$

On s'intéresse alors aux racines λ du polynôme :

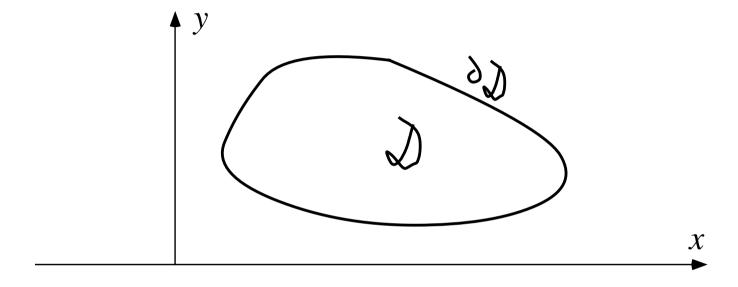
$$\det\left(-\lambda\,\underline{\underline{A}} + \underline{\underline{B}}\right) = 0$$

• Système "hyperbolique": il existe N solutions λ_n réelles et N "vecteurs propres à gauche" $\underline{\psi}_n$ de directions distinctes

$$-\lambda_n \underline{\psi}_n^T \underline{\underline{A}} + \underline{\psi}_n^T \underline{\underline{B}} = \underline{0} \text{ avec } n = 1, ..., N$$

- Système "parabolique": il n'existe que M "directions propres" avec M < N
- Système "elliptique": toutes les solutions λ_n sont complexes
- Cas "mixte": autres cas

Cas des systèmes elliptiques ou mixtes



Nous admettons ici qu'ils nécessitent des conditions aux limites sur une frontière fermée $\partial \mathcal{D}$ de l'espace (x,t). La variable t ne peut donc pas être une variable de temps respectant le principe de causalité.

La variable t est en fait une variable d'espace que l'on peut noter y.

Cas hyperbolique

$$\underline{\underline{A}} \partial_t \underline{U} + \underline{\underline{B}} \partial_x \underline{U} = \underline{\underline{D}} \underline{U}$$

Système hyperbolique s'il existe λ_n et $\underline{\phi}_n$ réels vérifiant :

$$-\lambda_n \underline{\psi}_n^T \underline{\underline{A}} + \underline{\psi}_n^T \underline{\underline{B}} = \underline{0} \quad \text{pour} \quad n = 1, ..., N$$

Multiplier à gauche l'équation standard par la matrice ligne $\underline{\psi}_n^T$:

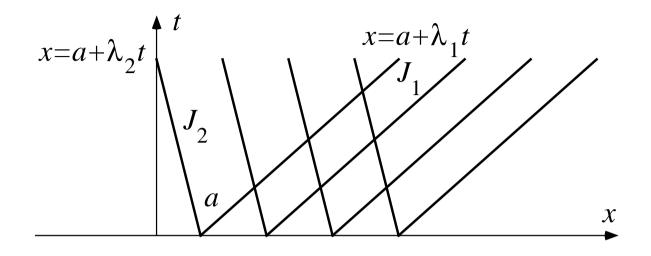
$$(\partial_t + \lambda_n \ \partial_x) \ \underline{\psi}_n^T \underline{\underline{A}} \underline{\underline{U}}(x,t) = \underline{\psi}_n^T \underline{\underline{D}} \underline{\underline{U}}(x,t) \quad \text{pour} \quad n = 1, ..., N.$$

On définit N "fonctions de Riemann" et N formes linéaires :

$$J_n(x,t) = \underline{\psi}_n^T \underline{\underline{A}} \underline{U}(x,t)$$
 et $\underline{\psi}_n^T \underline{\underline{D}} \underline{U} = L_n(J_1, ..., J_N)$

On a transformé les équations de départ en un système équivalent :

$$(\partial_t + \lambda_n \partial_x) J_n = L_n(J_1, ..., J_N)$$
 pour $n = 1, ..., N$



Les droites caractéristique d'équations $x = a + \lambda_n t$ jouent un rôle important dans la résolution de $(\partial_t + \lambda_n \partial_x) J_n = L_n(J_1, ..., J_N)$.

Cas particulier $\underline{D} = \underline{0}$:

$$(\partial_t + \lambda_n \ \partial_x) \ J_n = 0 \quad \text{pour} \quad n = 1, ..., N$$

Les J_n sont les "invariants de Riemann" du sytème. Les solutions s'écrivent $J_n(x,t) = J_{n0}(x - \lambda_n t)$.

1.4 Application des classifications à des exemples

Équation	Dispersion	Caractéristiques	
d'advection	Ondes non dispersives	Hyperbolique	
des ondes	Ondes non dispersives	Hyperbolique	
de KdV	Ondes dispersives	Parabolique	
de la chaleur	Cas amorti	Parabolique	
de Saint Venant	Ondes non dispersives	Hyperbolique	
de Laplace	(Non causal)	Elliptique	
du 2^{nd} degré $\Delta \geq 0$	Les quatre cas	Hyperbolique	

Équation d'advection $\partial_t u + c \partial_x u = 0$:

- Ondes non dispersives de relation de dispersion $\Omega(k) = c k$.
- Système hyperbolique avec $\lambda = c$ et J = u invariant de Riemann.

Équation des ondes $\partial_t^2 u - c^2 \partial_x^2 u = 0$:

Système sous la forme $\partial_t u - c \partial_x v = 0$ et $\partial_t v - c \partial_x u = 0$.

- Ondes non dispersives : $\Omega_1(k) = -c k$ et $\Omega_2(k) = c k$.
- Système hyperbolique avec $\lambda_1 = -c$ et $\lambda_2 = c$. Les invariants de Riemann sont $J_1 = u + v$ et $J_2 = u - v$.

Équation de KdV linéaire $\partial_t u + \alpha \partial_x u + \beta \partial_x^3 u = 0$:

- Ondes dispersives de relation de dispersion $\Omega(k) = \alpha k \beta k^3$.
- Système parabolique dans la mesure où la matrice $\underline{\underline{A}}\underline{\underline{B}}^{-1}$ n'est pas diagonalisable (bloc de Jordan).

Équation de la chaleur $\partial_t u = \kappa \partial_x^2 u$:

- Tous les modes k > 0 sont amortis : $s(k) = -\kappa k^2$
- Système est parabolique dans la mesure où $\underline{\underline{A}}\underline{\underline{B}}^{-1}$ n'est pas diagonalisable (bloc de Jordan).

Équation de Saint Venant linéarisée (voir plus loin) :

- Ondes non dispersives de relations de dispersion : $\Omega_1(k) = (U_0 + \sqrt{g h_0}) \ k \text{ et } \Omega_2(k) = (U_0 \sqrt{g h_0}) \ k.$
- Système hyperbolique avec $\lambda_1 = U_0 + \sqrt{g h_0}$ et $\lambda_2 = U_0 \sqrt{g h_0}$. Invariants de Riemann sont $J_1 = \widetilde{U} + \sqrt{\frac{g}{h_0}} \, \widetilde{\eta}$ et $J_2 = \widetilde{U} - \sqrt{\frac{g}{h_0}} \, \widetilde{\eta}$.

Équation de Laplace $\partial_y^2 u + \partial_x^2 u = 0$:

- Relations de dispersions non pertinentes
- Équation elliptique

Dans le cas $\underline{\underline{D}} = \underline{\underline{0}}$, l'EDP s'écrit $\underline{\underline{A}} \partial_t \underline{U} + \underline{\underline{B}} \partial_x \underline{U} = \underline{0}$:

- Relation de dispersion : det $(s \underline{\underline{A}} + i k \underline{\underline{B}}) = 0$
- Existence de caractéristiques : det $(-\lambda \underline{\underline{A}} + \underline{\underline{B}}) = 0$

Système ondulatoire \iff système hyperbolique

En effet
$$\frac{s}{ik} = -\lambda$$
 d'où $\Omega_n(k) = \lambda_n k$ pour $n = 1, ..., N$.

On qualifie souvent d'"ondes hyperboliques" les ondes non dispersives, l'hypothèse $\underline{D}=\underline{0}$ étant alors implicite.

C'est ce cas que nous allons développer sur l'exemple des équations de Saint Venant linéaires en l'absence de frottement.

2 Ondes de surface linéaires et hyperboliques

Mouvement d'une couche fluide à surface libre.

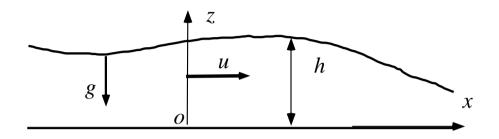
Cas où le milieu est peu profond : équations de Saint Venant.

Petits mouvements autour d'un écoulement de base : linéarisation des équations de Saint Venant.

Ondes non dispersives et hyperboliques : droites caractéristiques.

- 2.1 Linéarisation des équations de Saint Venant
- 2.2 Ondes de surface dans un canal infini et peu profond
- 2.3 Droites caractéristiques et invariants de Riemann

2.1 Linéarisation des équations de Saint Venant



Équations de Saint Venant non linéaires 1D sans frottement :

$$\partial_t h + \partial_x (h U) = 0$$
 et $\partial_t U + U \partial_x U = -g \partial_x h$

Petits mouvement autour la solution $(h, U) = (h_0, U_0)$:

$$h = h_0 + \widetilde{\eta}$$
 et $U = U_0 + \widetilde{U}$

En supposant $\widetilde{\eta}/h_0$ et \widetilde{U}/U_0 sont de l'ordre de $\epsilon \ll 1$:

$$\partial_t \widetilde{\eta} + U_0 \partial_x \widetilde{\eta} + h_0 \partial_x \widetilde{U} = 0$$
 et $\partial_t \widetilde{U} + g \partial_x \widetilde{\eta} + U_0 \partial_x \widetilde{U} = 0$.

2.2 Ondes de surface : canal infini et peu profond

$$\underline{\underline{A}} \partial_t \underline{U} + \underline{\underline{B}} \partial_x \underline{U} = \partial_t \begin{pmatrix} \widetilde{\eta} \\ \widetilde{U} \end{pmatrix} + \begin{pmatrix} U_0 & h_0 \\ g & U_0 \end{pmatrix} \partial_x \begin{pmatrix} \widetilde{\eta} \\ \widetilde{U} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} .$$

où
$$\underline{U} = \begin{pmatrix} \widetilde{\eta} \\ \widetilde{U} \end{pmatrix}$$
, $\underline{\underline{A}} = \underline{\underline{I}}$ est la matrice identité et $\underline{\underline{B}} = \begin{pmatrix} U_0 & h_0 \\ g & U_0 \end{pmatrix}$.

La recherche des valeurs propres λ et vecteurs propres à droite $\underline{\phi}$ de \underline{B} , qui s'écrit \underline{B} $\underline{\phi} = \lambda$ $\underline{\phi}$, conduit à

$$\lambda_1 = U_0 + \sqrt{\frac{g}{h_0}} h_0 = U_0 + c_0 \quad \text{et} \quad \lambda_2 = U_0 - \sqrt{\frac{g}{h_0}} h_0 = U_0 - c_0$$

$$\underline{\phi}_1 = \left(\sqrt{\frac{h_0}{g}}\right) = \left(\frac{1/\chi}{1}\right) \quad \text{et} \quad \underline{\phi}_2 = \left(-\sqrt{\frac{h_0}{g}}\right) = \left(-1/\chi\right)$$

où l'on a noté $c_0 = \sqrt{g h_0}$ et $\chi = \sqrt{\frac{g}{h_0}}$.

Comme $\underline{\underline{D}} = 0$: système hyperbolique \iff ondes non dispersives

Relations de dispersion des équations de Saint Venant :

$$\omega = \Omega_1(k) = \lambda_1 k$$
 et $\omega = \Omega_2(k) = \lambda_2 k$.

On obtient des solutions complexes $\underline{\widetilde{U}}(x,t) = \underline{\widetilde{U}}_m \ e^{i k x + s \ t}$:

$$\begin{pmatrix} \widetilde{\eta} \\ \widetilde{U} \end{pmatrix} = \begin{pmatrix} \widetilde{\eta}_m \\ \widetilde{U}_m \end{pmatrix} e^{i k x + s t} = \begin{pmatrix} \widetilde{\eta}_m \\ \widetilde{U}_m \end{pmatrix} e^{i k x - i \omega t}$$

où les composantes $\widetilde{\eta}_m$ et \widetilde{U}_m sont des amplitudes complexes.

Les vecteurs propres vérifient : $s \underline{\widetilde{U}}_m + i k \underline{\underline{B}} \underline{\widetilde{U}}_m = 0.$

On a donc obtenu des solutions de la forme

$$\underline{\widetilde{U}}(x,t) = A_1 \underline{\phi}_1 e^{i k (x - \lambda_1 t)}$$
 ou $\underline{\widetilde{U}}(x,t) = A_2 \underline{\phi}_2 e^{i k (x - \lambda_2 t)}$

avec A_1 et A_2 amplitudes complexes arbitraires.

Ondes monochromatiques **non dispersives** dont les vitesses de phase sont $\lambda_1 = U_0 + c_0$ ou $\lambda_2 = U_0 - c_0$.

Problème aux conditions initiales : $\underline{\widetilde{U}}(x,0) = \underline{\widetilde{U}}_0(x)$

On décompose le vecteur $\underline{\widetilde{U}}_0(x)$ sur la base $(\underline{\phi}_1,\underline{\phi}_2)$:

$$\underline{\widetilde{U}}_0(x) = \begin{pmatrix} \widetilde{\eta}_0(x) \\ \widetilde{U}_0(x) \end{pmatrix} = A_1(x) \, \underline{\phi}_1 + A_2(x) \, \underline{\phi}_2 = \begin{pmatrix} \frac{1}{\chi} \left[A_1(x) - A_2(x) \right] \\ A_1(x) + A_2(x) \end{pmatrix} .$$

On a donc
$$A_1 = \frac{1}{2} \left(\widetilde{U}_0 + \frac{1}{\chi} \widetilde{\eta}_0 \right)$$
 et $A_2 = \frac{1}{2} \left(\widetilde{U}_0 - \frac{1}{\chi} \widetilde{\eta}_0 \right)$.

La transformée de Fourier de A(x):

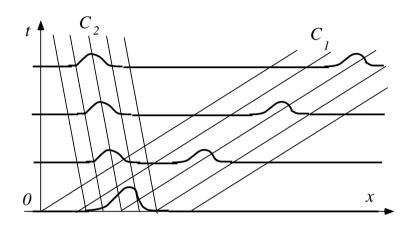
$$A(x) = \int_{\mathbb{R}} \widehat{A}(k) e^{i k x} dk \quad \iff \quad \widehat{A}(k) = \frac{1}{2\pi} \int_{\mathbb{R}} A(x) e^{-i k x} dx$$

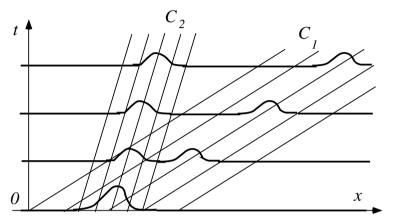
Solution $\underline{\widetilde{U}}(x,t)$ superposition d'ondes monochromatiques :

$$\underline{\widetilde{U}}(x,t) = \left[\int_{\mathbb{R}} \widehat{A}_1(k) \ e^{i k(x-\lambda_1 t)} \ dk \right] \ \underline{\phi}_1 + \left[\int_{\mathbb{R}} \widehat{A}_2(k) \ e^{i k(x-\lambda_2 t)} \ dk \right] \ \underline{\phi}_2$$

$$= A_1(x-\lambda_1 t) \ \underline{\phi}_1 + A_2(x-\lambda_2 t) \ \underline{\phi}_2$$

Nombre de Froude : $F_r = |U_0|/\sqrt{g \, h_0} = |U_0|/c_0$





• $F_r < 1$: régime "sous-critique": les vitesses $\lambda_1 = U_0 + c_0$ et $\lambda_2 = U_0 - c_0$ sont de signes opposés.

L'information issue, par exemple, d'une condition initiale quelconque, remonte donc vers la droite et vers la gauche.

• F > 1: régime "supercritique": l'information se propage dans une seule direction, vers la droite si $U_0 > 0$.

2.3 Dr. caractéristiques et invariants de Riemann

En multipliant les équations de Saint Venant linéaires 1D à gauche par le vecteur ligne $\underline{\psi}_1^T = (\sqrt{g/h_0}, 1) = (\chi, 1)$, on obtient :

$$\sqrt{\frac{g}{h_0}} \, \partial_t \, \widetilde{\eta} + \partial_t \, \widetilde{U} + \left(U_0 \sqrt{\frac{g}{h_0}} + g \right) \partial_x \, \widetilde{\eta} + \left(h_0 \sqrt{\frac{g}{h_0}} + U_0 \right) \partial_x \, \widetilde{U} =$$

$$\partial_t \left(\widetilde{U} + \sqrt{\frac{g}{h_0}} \, \widetilde{\eta} \right) + \left(U_0 + \sqrt{g \, h_0} \right) \partial_x \left(\widetilde{U} + \sqrt{\frac{g}{h_0}} \, \widetilde{\eta} \right) = 0$$

Il suffit ensuite de changer le signe devant chacun des symboles $\sqrt{}$ pour multiplier par $\underline{\psi}_2^T = (-\sqrt{g/h_0}, 1) = (-\chi, 1)$. On a donc :

$$\partial_t J_1 + \lambda_1 \, \partial_x J_1 = 0 \qquad \text{et} \qquad \partial_t J_2 + \lambda_2 \, \partial_x J_2 = 0$$
$$(J_1, J_2) = \left(\widetilde{U} + \chi \, \widetilde{\eta}, \quad \widetilde{U} - \chi \, \widetilde{\eta}\right) \quad \text{et} \quad (\lambda_1, \lambda_2) = (U_0 + c_0, \, U_0 - c_0)$$

N. B.: on a
$$\underline{\underline{B}}\underline{\psi}_1 = \lambda_1\underline{\psi}_1$$
 et $\underline{\underline{B}}\underline{\psi}_2 = \lambda_2\underline{\psi}_2$

Invariants de Riemann : $J_1(x,t)$ et $J_2(x,t)$

$$\partial_t J_1 + \lambda_1 \, \partial_x J_1 = 0 \qquad \text{et} \qquad \partial_t J_2 + \lambda_2 \, \partial_x J_2 = 0$$
$$(J_1, J_2) = \left(\widetilde{U} + \chi \, \widetilde{\eta}, \quad \widetilde{U} - \chi \, \widetilde{\eta}\right) \quad \text{et} \quad (\lambda_1, \lambda_2) = (U_0 + c_0, \, U_0 - c_0)$$

Droites caractéristiques : $C_1 : x = a + \lambda_1 t$ et $C_2 : x = a + \lambda_2 t$

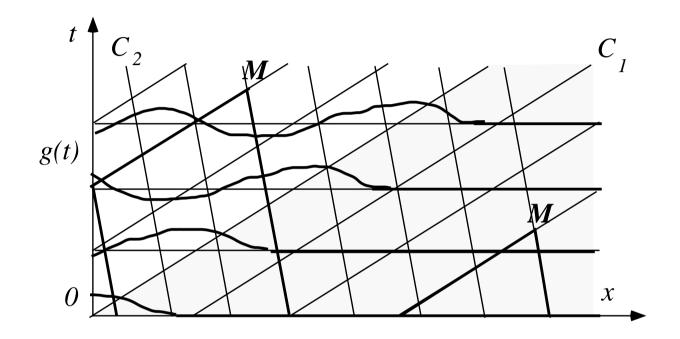
Cas où le domaine spatial est la droite réelle :

$$J_1(x,t) = J_{10}(x - \lambda_1 t)$$
 et $J_2(x,t) = J_{20}(x - \lambda_1 t)$
avec $J_{10}(x) = \widetilde{U}_0(x) + \chi \widetilde{\eta}_0(x)$ et $J_{20}(x) = \widetilde{U}_0(x) - \chi \widetilde{\eta}_0(x)$.

On en déduit que la solution (déjà trouvée) s'écrit

$$\underline{\widetilde{U}}(x,t) = \frac{1}{2}J_{10}(x-\lambda_1 t) \begin{pmatrix} 1/\chi \\ 1 \end{pmatrix} + \frac{1}{2}J_{20}(x-\lambda_2 t) \begin{pmatrix} -1/\chi \\ 1 \end{pmatrix} \\
= A_1(x-\lambda_1 t) \underline{\phi}_1 + A_2(x-\lambda_2 t) \underline{\phi}_2$$

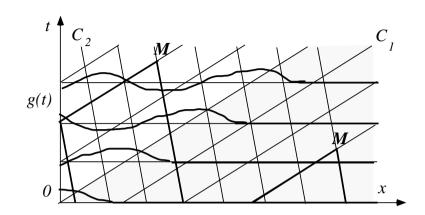
Cas où le domaine spatial est borné:



Exemple: $x \in \mathbb{R}^+$, cas sous-critique $F_r < 1$ et $U_0 > 0$.

Conditions initiales: $\widetilde{\eta}(x,t) = \widetilde{\eta}_0(x)$ et $\widetilde{U}(x,t) = \widetilde{U}_0(x)$ pour $x \ge 0$.

Condition aux limites : $\tilde{\eta}(0,t) = \tilde{\eta}_e(t)$.



• Pour $t \geq 0$ et $x \geq \lambda_1$ t: invariants J_1 et J_2

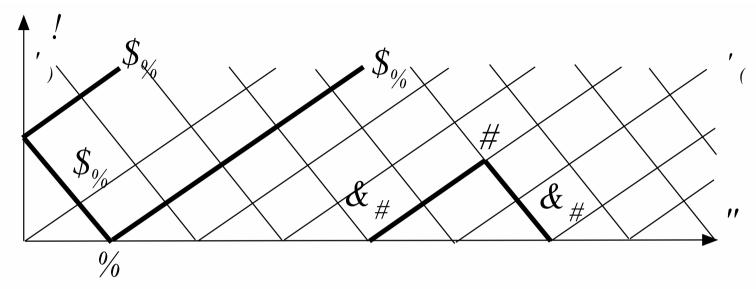
$$\widetilde{U}(x,t) = \frac{\widetilde{U}_0(x-\lambda_1 t) + \widetilde{U}_0(x-\lambda_2 t)}{2} + \chi \frac{\widetilde{\eta}_0(x-\lambda_1 t) - \widetilde{\eta}_0(x-\lambda_2 t)}{2}$$

$$\widetilde{\eta}(x,t) = \frac{\widetilde{\eta}_0(x-\lambda_1 t) + \widetilde{\eta}_0(x-\lambda_2 t)}{2} + \frac{1}{\chi} \frac{\widetilde{U}_0(x-\lambda_1 t) - \widetilde{U}_0(x-\lambda_2 t)}{2}$$

• Pour x = 0 (position de l'écluse) : $J_2(0, t) = J_2(x - \lambda_2 t, 0)$

$$\widetilde{U}(0,t) - \chi \ \widetilde{\eta}_e(t) = \widetilde{U}_0(x - \lambda_2 t) - \chi \ \widetilde{\eta}_0(x - \lambda_2 t) \ .$$

Domaines d'influence:



- Domaine (droites) S_P "sous l'influence" du point P
- Domaine (droites) Q_M "qui influence" le point M.

Ces considérations géométriques permettent de déterminer le nombre exact de conditions que l'on peut imposer à la frontière d'un domaine du plan (x, t) pour obtenir un problème bien posé.

3 Ondes de surface linéaires et dispersives

Ondes de surface pour une profondeur quelconque : modèle des équations d'Euler 2D incompressibles à surface libre.

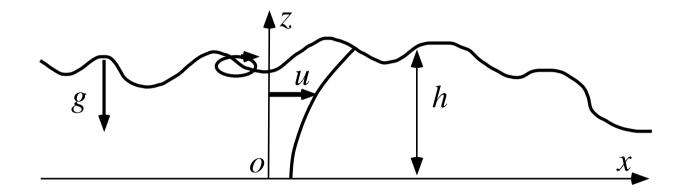
Petits mouvements autour du repos : système linéarisé où la surface libre est remplacée par une surface fixe.

Relation de dispersion : ondes dispersives.

Train d'ondes généré par une condition initiale

- 3.1 Équations d'Euler incompressibles 2D à surface libre
- 3.2 Relations de dispersion des ondes de surface
- 3.3 Dispersion d'un paquet d'ondes et vitesse de groupe

3.1 Équations d'Euler incompressibles 2D à surface libre



$$\operatorname{div} \underline{U} = 0 \qquad \text{et} \qquad \rho_0 \frac{d\underline{U}}{dt} = -\operatorname{grad} p - \rho_0 g \underline{e}_z$$

Conditions aux limites:

$$\begin{cases} \partial_t h + u \,\partial_x h = w \\ p = p_a \end{cases} \quad \text{en} \quad z = h(x, t) \quad \text{et} \quad w = 0 \quad \text{en} \quad z = 0$$

Hypothèse d'écoulement irrotationnel : $\underline{\text{rot}} \underline{U} = \underline{0}$.

Donc potentiel des vitesses $\phi(x, z, t)$ tel que $\underline{U} = \operatorname{grad} \phi$.

Comme div grad =
$$\Delta$$
 et $\frac{d\underline{U}}{dt} = \frac{\partial \underline{U}}{\partial t} + \frac{1}{2} \operatorname{grad} (\underline{U}^2) + \operatorname{rot} \underline{U} \wedge \underline{U}$:

$$\Delta \phi = 0 \quad \text{et} \quad \underbrace{\text{grad}}_{} \left[\partial_t \phi + \frac{1}{2} \left(\underbrace{\text{grad}}_{} \phi \right)^2 + \frac{p}{\rho_0} + g z \right] = \underline{0}$$

$$\begin{cases} \partial_t h + \partial_x \phi \, \partial_x h = \partial_z \phi \\ p = p_a \end{cases} \quad \text{en} \quad z = h(x, t) \quad \text{et} \quad \partial_z \phi = 0 \quad \text{en} \quad z = 0.$$

Comme ϕ est défini à une fonction C(t) près du temps on peut éliminer la pression du système d'équations en écrivant

$$p(x, z, t) = p_a - \rho_0 \left[\partial_t \phi + \frac{1}{2} \left(\operatorname{grad} \phi \right)^2 + g \left(z - h_0 \right) \right]$$

3.2 Relations de dispersion des ondes de surface

Petites oscillations autour du repos $h = h_0$ et $\underline{U} = \underline{0}$.

Pour cet état "hydrostatique", on a $p_0(z) = p_a - \rho_0 g(z - h_0)$.

On définit alors les notations :

$$h(x,t) = h_0 + \widetilde{\eta}(x,t) , \qquad p(x,z,t) = p_0(z) + \widetilde{p}(x,z,t)$$

et
$$\phi(x,z,t) = \widetilde{\phi}(x,z,t)$$

En reportant dans les équations :

$$\begin{cases} \partial_t \, \widetilde{\eta} - \partial_z \, \widetilde{\phi} = -\partial_x \widetilde{\phi} \, \partial_x \widetilde{\eta} \\ \partial_t \, \widetilde{\phi} + g \, \widetilde{\eta} = -\frac{1}{2} \, \left(\operatorname{grad} \, \widetilde{\phi} \right)^2 & \text{en } z = h_0 + \widetilde{\eta}(x, t) \\ \Delta \widetilde{\phi} = 0 \quad \text{partout} \quad \text{et } \partial_z \, \widetilde{\phi} = 0 \quad \text{en } z = 0 . \end{cases}$$

La "pression dynamique" est : $\widetilde{p} = -\rho_0 \left[\partial_t \widetilde{\phi} + \frac{1}{2} \left(\operatorname{grad} \widetilde{\phi} \right)^2 \right]$

Approximation linéaire des petits mouvements

On suppose que $\widetilde{\eta}/h_0$, \widetilde{p}/p_0 et $\widetilde{\phi}/(h_0\sqrt{g\,h_0})$ sont d'ordre $\epsilon \ll 1$:

On néglige les termes quadratiques en ϵ .

Toute fonction f(h) dérivable vérifie :

$$f[h(x,t)] = f[h_0 + \widetilde{\eta}(x,t)] = f(h_0) + O(\epsilon) = f(h_0) + \widetilde{\eta}(x,t)f'(h_0) + O(\epsilon^2)$$
.

On peut donc remplacer les valeurs sur la surface libre par les valeurs en $z = h_0$ et donc considérer le domaine délimité par ce "toit rigide".

L'ordre dominant en ϵ conduit au système linéaire :

$$\begin{cases} \partial_t \widetilde{\eta} - \partial_z \widetilde{\phi} = 0 \\ \partial_t \widetilde{\phi} + g \widetilde{\eta} = 0 \end{cases} \text{ en } z = h_0 , \qquad \Delta \widetilde{\phi} = 0 \qquad \text{ et } \partial_z \widetilde{\phi} = 0 \text{ en } z = 0 .$$

La pression dynamique est $\widetilde{p}(x,z,t) = -\rho_0 \partial_t \widetilde{\phi}(x,z,t)$.

Relation de dispersion

On peut alors éliminer $\widetilde{\eta}(x,t) = -\frac{1}{g} \partial_t \widetilde{\phi}(x,0,t)$ pour obtenir

$$\partial_t^2 \widetilde{\phi} + g \, \partial_z \widetilde{\phi} = 0 \quad \text{en } z = h_0 , \qquad \Delta \widetilde{\phi} = 0 \quad \text{et} \quad \partial_z \widetilde{\phi} = 0 \text{ en } z = 0 .$$

Lorsque $x \in \mathbb{R}$, on peut chercher des solutions complexes :

$$\widetilde{\eta}(x,t) = \widetilde{\eta}_m \ e^{i k x + s t}$$
 et $\widetilde{\phi}(x,z,t) = \Phi(z) \ e^{i k x + s t}$

En reportant cette expression dans les équations :

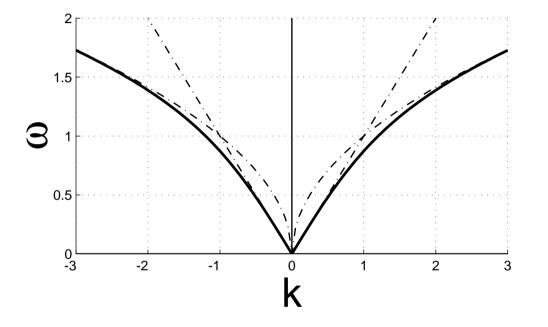
$$s^2 \Phi(h_0) + g \Phi'(h_0) = 0$$
, $\Phi''(z) - k^2 \Phi(z) = 0$ et $\Phi'(0) = 0$

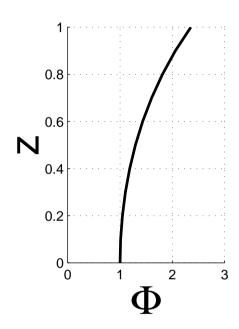
En cherchant un profil $\Phi(z) = A \cosh(kz) + B \sin(kz)$, on trouve

$$\Phi(z) = \Phi_m \cosh(kz)$$
 et $s = -i \omega$ avec $\omega^2 = g k \tanh(k h_0)$

On note que $\partial_t \widetilde{\phi} + g \widetilde{\eta} = 0$ en z = 0 entraı̂ne $\Phi_m = -i \frac{g}{\omega \cosh(k h_0)} \widetilde{\eta}_m$.

$$\Omega_a(k) = \sqrt{g \ k \ \tanh(k \ h_0)}$$
 et $\Omega_s(k) = \operatorname{sign}(k) \ \Omega_a(k)$





Le système linéaire décrit donc des ondes dispersives dont les relations de dispersion sont

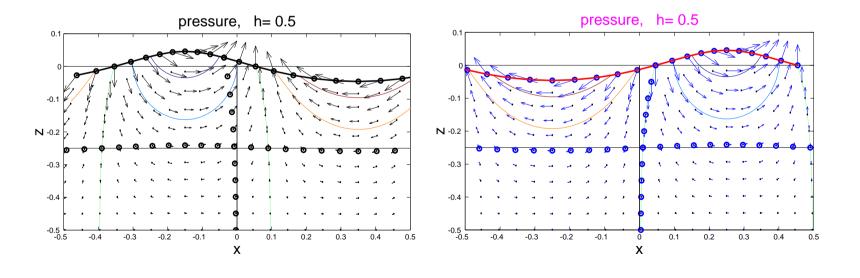
$$\Omega_1(k) = \Omega_s(k)$$
 et $\Omega_2(k) = -\Omega_s(k)$

Vague:
$$\widetilde{\eta}_1(x,t) = \frac{H}{2} \cos(k x - \omega_1 t + \varphi) \text{ avec } \omega_1 = \Omega_1(k)$$

$$\left[\widetilde{\eta}_1(x,t),\widetilde{\phi}_1(x,z,t)\right] = \widetilde{\eta}_{1m} \left[1, \frac{-ig}{\Omega_s(k)} \frac{\cosh(kz)}{\cosh(kh_0)}\right] e^{ikx - i\Omega_s(k)t}$$

Le champ de vitesse réel associé au potentiel $\phi_1(x,z,t)$ est alors

$$\underline{U}_{1}(x,z,t) = \begin{pmatrix} \widetilde{U}_{1} \\ \widetilde{w}_{1} \end{pmatrix} = \frac{H g k}{2 \omega_{1} \cosh(k h_{0})} \begin{pmatrix} \cosh(k z) \sin(k x - \omega_{1} t + \varphi) \\ \sinh(k z) \cos(k x - \omega_{1} t + \varphi) \end{pmatrix}$$

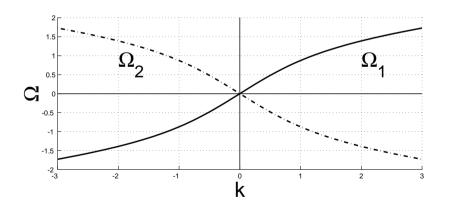


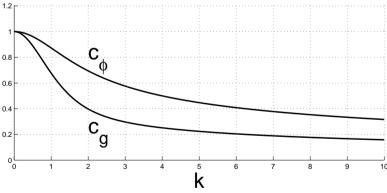
Vitesse de phase, vitesse de groupe

Vitesse de phase : $c_{\varphi} = \omega/k$

Vitesse de groupe" : $c_g(k) = \Omega'(k)$

$$c_g(k) = c_{\varphi}(k) \left[\frac{1}{2} + \frac{k h}{\sinh(2 k k_0)} \right].$$





3.3 Dispersion d'un paquet d'ondes

Écoulement $[\widetilde{\eta}(x,t),\ \widetilde{\phi}(x,z,t)]$ issu de la condition initiale

$$[\widetilde{\eta}(x,0),\ \widetilde{\phi}(x,z,0)] = [\widetilde{\eta}_0(x),\widetilde{\phi}_0(x,z)]$$

On doit avoir $\Delta \widetilde{\phi}_0 = 0$ et $\partial_z \widetilde{\phi}_0 = 0$ en z = 0 (incompressibilité + c.l.) On décompose la condition initiale en intégrale de Fourier en écrivant

$$\widetilde{\eta}_0(x) = \int_{\mathbb{R}} \widehat{\eta}_0(k) e^{i k x} dk \text{ et } \widetilde{\phi}_0(x, z) = \int_{\mathbb{R}} \widehat{\phi}_0(k) \cosh(k z) e^{i k x} dk.$$

En écrivant la forme générale des solutions, on obtient

$$\widehat{\eta}_{10}(k) = \frac{1}{2} \left[\widehat{\eta}_0(k) + \frac{i}{g} \, \widehat{\phi}_0(k) \, \cosh(k \, h_0) \, \Omega_s(k) \right]$$

$$\widehat{\eta}_{20}(k) = \frac{1}{2} \left[\widehat{\eta}_0(k) - \frac{i}{g} \, \widehat{\phi}_0(k) \, \cosh(k \, h_0) \, \Omega_s(k) \right].$$

Train d'ondes à droite :

$$\widetilde{\eta}_{1}(x,t) = \int_{\mathbb{R}} \widehat{\eta}_{10}(k) e^{i k x - i \Omega_{s}(k) t} dk$$

$$\widetilde{\phi}_{1}(x,z,t) = \int_{\mathbb{R}} \frac{\widehat{\eta}_{10}(k)}{-\Omega_{s}(k)} \frac{\cosh(k z)}{\cosh(k h_{0})} e^{i k x - i \Omega_{s}(k) t} dk.$$

Condtions initiales

$$\widetilde{\eta}_{10}(x) = \int_{\mathbb{R}} \widehat{\eta}_{10}(k) e^{ikx} dk$$
 et $\widetilde{\phi}_{10}(x, z) = \widetilde{\phi}_{1}(x, z, 0)$

• Paquet d'ondes :

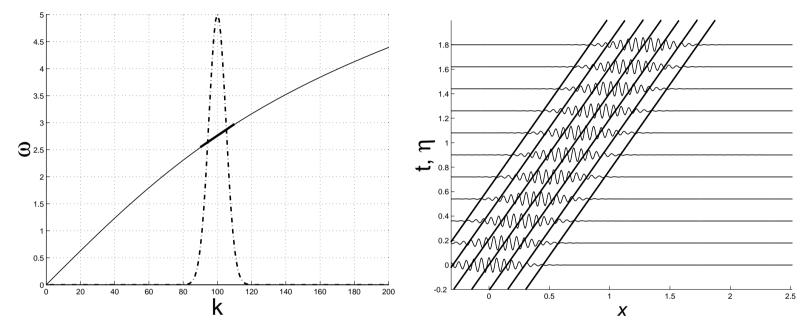
$$\widehat{\eta}_{10}(k) = \widetilde{\eta}_g \left[\widehat{E}(k - k_0) + \widehat{E}(k + k_0) \right] \iff \widetilde{\eta}_{10}(x) = 2 \ \widetilde{\eta}_g \cos(k_0 x) \ E(x)$$

• Impulsion de Dirac :

$$\widehat{\eta}_{10}(k) = \widetilde{\eta}_d \iff \widetilde{\eta}_{10}(x) = 2 \pi \, \widetilde{\eta}_d \, \delta(x)$$

Paquet d'ondes:

$$\widehat{E}(k) = e^{\frac{-p^2}{2\chi^2}} \iff E(x) = \chi \sqrt{2\pi} e^{-\frac{\chi^2 x^2}{2}}$$



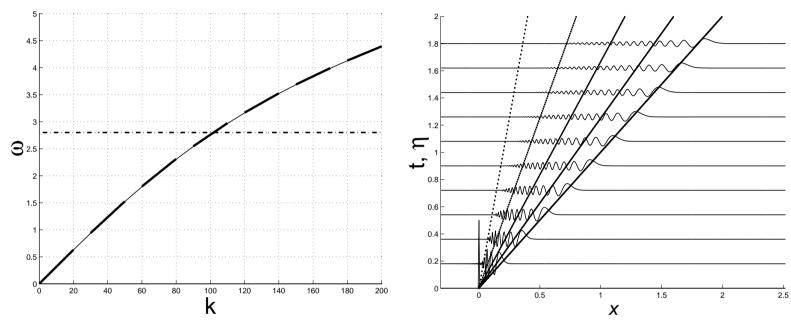
Approximation linéaire de la relation de dispersion :

$$\Omega_s(k) = \Omega_s(k_0) + \Omega'_s(k_0)(k - k_0) + O[(k - k_0)^2]$$

On obtient, en notant $c_{g1}(k) = \Omega'_1(k) = \Omega'_s(k)$:

$$\widetilde{\eta}_1(x,t) = \cos[k_0 x - \Omega_s(k_0) t] E[x - c_{g1}(k_0) t]$$

Impulsion de Dirac : $\widehat{\eta}_{10}(k) = \widetilde{\eta}_d \iff \widetilde{\eta}_{10}(x) = 2 \pi \, \widetilde{\eta}_d \, \delta(x)$



En notant k_c la solution de $c_g(k_c) = c$, on a, pour t grand :

$$\widetilde{\eta}_1(x,t) = \widetilde{\eta}_d \int_{\mathbb{R}} e^{i k x - i \Omega_s(k) t} dk \sim \frac{1}{\sqrt{t}} G\left[k_c\left(\frac{x}{t}\right)\right] e^{i k_c\left(\frac{x}{t}\right) x - \Omega_s\left[k_c\left(\frac{x}{t}\right)\right] t}$$

Méthode de la phase sationnaire :

$$I(t) = \int_{\mathbb{R}} g(k) e^{i \Psi(k) t} dk \sim \frac{1}{\sqrt{t}} g(k_*) \sqrt{\frac{2\pi}{|\Psi''(k_*)|}} e^{i \operatorname{sign}[\Psi''(k_*)] \frac{\pi}{4}} e^{i \Psi(k_*) t}$$

Conclusion

Ondes de surface linéaires :

- Profondeur quelconque : ondes dispersives de vitesse de phase $c_{\varphi}(k)$ ou $U_0 + c_{\varphi}(k)$ s'il existe un courant moyen.
- Profondeur h_0 petite : ondes non dispersives de vitesse de phase $U_0 \pm \sqrt{g h_0}$.

Équations de Saint-Venant:

- hyperbolique, existence de droites caractéristiques et d'invariants de Riemann.
- On peut aborder le cas où le domaine spatial est limité par des parois

Caillou dans l'eau (impulsion):

- Pour les ondes dispersives, l'impulsion initiale génère des paquets d'ondes qui se propagent à leur vitesses de groupes respectives. Les paquets d'ondes les plus rapides correspondent aux longeurs l'ondes les plus grandes. Les vitesses sont donc comprises entre $U_0 + \sqrt{g h_0}$ et $U_0 \sqrt{g h_0}$ en tenant compte de la vitesse moyenne U_0 .
- Pour les ondes hyperboliques, décrites par les équations de Saint Venant, la perturbation initiale se décompose en deux intumescences qui se propagent sans déformation avec leurs vitesses respectives $U_0 + \sqrt{g h_0}$ et $U_0 \sqrt{g h_0}$.

On voit donc que les deux approches, dispersives et non dispersives, se rejoignent si l'on ne considère que les grandes ondes.

FORMULAIRE

CLASSIFICATION DES EDP 1D

Forme standard

$$\underline{\underline{A}} \, \partial_t \, \underline{\underline{U}} + \underline{\underline{B}} \, \partial_x \, \underline{\underline{U}} = \underline{\underline{D}} \, \underline{\underline{U}}$$

Classification par relation de dispersion

$$\det \left(s \, \underline{\underline{A}} + i \, k \, \underline{\underline{B}} - \underline{\underline{D}} \right) = 0 \; .$$

$$s = S_n(k) = \Sigma_n(k) - i \Omega_n(k)$$
 avec $n = 1, ..., M$

Classification par existence de caractéristiques

$$\det\left(-\lambda\,\underline{\underline{A}} + \underline{\underline{B}}\right) = 0.$$

$$(\partial_t + \lambda_n \partial_x) J_n = L_n(J_1, ..., J_N)$$
 pour $n = 1, ..., N$.

ONDES DE SURFACE HYPERBOLIQUES

Équations de Saint Venant linéaire

$$\begin{cases} \partial_t \widetilde{\eta} + U_0 \, \partial_x \widetilde{\eta} + h_0 \, \partial_x \widetilde{U} &= 0 \\ \partial_t \widetilde{U} + g \, \partial_x \widetilde{\eta} + U_0 \, \partial_x \widetilde{U} &= 0 \end{cases}$$

Modes propres

$$\Omega_{1,2}(k) = \left(U_0 \pm \sqrt{g h_0}\right) k$$
 et $\underline{\phi}_{1,2} = \begin{pmatrix} \pm \sqrt{\frac{h_0}{g}} \\ 1 \end{pmatrix}$

Invariants de Riemann

$$\lambda_{1,2} = U_0 \pm \sqrt{g h_0}$$
 et $J_{1,2} = \widetilde{U} \pm \sqrt{\frac{g}{h_0}} \, \widetilde{\eta}$

ONDES DE SURFACE DISPERSIVES

Équation d'Euler irrotationnelles linéarisées

$$\begin{cases} \partial_t \widetilde{\eta} - \partial_z \widetilde{\phi} = 0 \\ \partial_t \widetilde{\phi} + g \widetilde{\eta} = 0 \end{cases} \text{ en } z = h_0 , \qquad \Delta \widetilde{\phi} = 0 \qquad \text{ et } \partial_z \widetilde{\phi} = 0 \text{ en } z = 0$$

Relations de dispersion

$$\Omega_{12}(k) = \pm \operatorname{sign}(k) \ \Omega_a(k) \quad \text{avec} \quad \Omega_a(k) = \sqrt{g \ k \ \tanh(k \ h_0)}$$

Vitesse de groupe

$$c_g(k) = c_{\varphi}(k) \left[\frac{1}{2} + \frac{k h}{\sinh(2 k k_0)} \right].$$