NOTATIONS

a	Abscisse d'une droite caractéristique pour $t=0~(\mathrm{m})$
a	Coefficient d'une EDP du second ordre
A	Constante d'intégration
A(x)	Fonction de x ()
$\widehat{A}(k)$	Transformée de Fourier $A(x)$ (m)
$\widehat{A}_n(k)$	Amplitudes complexes (m)
$\widehat{A}_n^*(k)$	Complexe conjugué de $\hat{A}_n(k)$ (m)
A_1, A_2	Profils découlant d'une condition initiale \underline{U}_0 ()
<u>A</u>	Matrice $N \times N$ à coefficients constants
b	Coefficient d'une EDP du second ordre
B	Constante d'intégration
<u>B</u>	Matrice $N \times N$ à coefficients constants
2D	Bidimensionnel ()
c	Coefficient d'une EDP du second ordre
c	Vitesse de l'équation des ondes $(m s^{-1})$
c	Vitesse d'une particule fictive (m s^{-1})
c_0	Vitesse $c_0 = \sqrt{g h_0} \text{ (m s}^{-1})$
c_{arphi}	Vitesse de phase $(m s^{-1})$
$c_{\varphi s}(k)$	Vitesse de phase $\Omega_s(k)/k \text{ (m s}^{-1})$
$c_{\varphi 1}, c_{\varphi 2}$	Vitesse de phase à droite et à gauche (m s^{-1})
c_g	Vitesse groupe (m s^{-1})
$c_{gs}(k)$	Vitesse groupe $\Omega_s'(k)$ (m s ⁻¹)
c_{g1}, c_{g2}	Vitesses de groupe à droite et à gauche (m $\rm s^{-1})$
cosh	Cosinus hyperbolique ()
d	Coefficient d'une EDP du second ordre
$\frac{d}{dt}$	Opérateur dérivée particulaire $\frac{d}{dt} = \partial_t + \underline{U} \cdot \underline{\text{grad}}$ (s ⁻¹)

2 NOTATIONS

∂_t	Opérateur dérivée partielle par rapport au temps (s^{-1})
∂_t^2	Dérivée partielle seconde par rapport au temps (s^{-2})
$\partial_x, \partial_y, \partial_z$	Opérateurs dérivée partielle par rapport à x, y et z (m ⁻¹)
$\partial_x^2,\partial_y^2$	Dérivée partielle seconde par rapport à x et y (m $^{-2}$)
div	Opérateur divergence (m^{-1})
<u>D</u>	Matrice $N \times N$ à coefficients constants
\mathcal{D}	Domaine du plan (x, y)
$\partial \mathcal{D}$	Frontière du domaine \mathcal{D}
e	Coefficient d'une EDP du second ordre
\underline{e}_x	Vecteurs de base unitaire horizontal (m)
\underline{e}_z	Vecteurs de base unitaire vertical (m)
E(x)	Enveloppe d'un paquet d'onde ()
$\widehat{E}(q)$	Transformée de Fourier de $E(x)$ (m)
EDP	Équation aux dérivées partielles ()
f	Coefficient d'une EDP du second ordre
f(h)	Fonction quelconque de h ()
F(x, z, t)	Équation de la surface libre ()
F_r	Nombre de Froude ()
g	Gravité (m s^{-2})
g(k)	Fonction quelconque ()
G_*	Constante pour la méthode de la phase stationnaire ()
<u>gra</u> d	Gradient par rapport aux variables \underline{x} (m ⁻¹)
h	Hauteur de la surface libre (m)
h_0	Hauteur constante (m)
\widetilde{h}	Perturbation d'élévation de la surface libre (m)
\widetilde{h}_0	Condition initiale (m)
\widetilde{h}_{10}	Partie "à droite" de la condition initiale (m)
\widetilde{h}_e	Condition aux limites (m)

$\hat{h}_0(k)$	Transformée de Fourier de $\widetilde{\eta}_0(x)$ (m ²)
H	Hauteur de la vague (m)
I(t)	Intégrale pour la méthode de la phase stationnaire
<u>I</u>	Matrice identité
$J_n(x,t)$	Fonction ou invariant de Riemann
J_{10}, J_{20}	Invariants de Riemann des conditions initiales
k	Nombre d'onde positif ou négatif (m^{-1})
k_0	Nombre d'onde d'un paquet d'ondes (m^{-1})
k_*	Nombre d'onde tel que $\Psi'(k_*) = 0 \text{ (m}^{-1})$
k_c	Nombre d'onde tel que $c_g(k_c) = c \text{ (m}^{-1})$
$L_n(J_1,,J_N)$	Forme linéaire
M	Nombre de valeurs propres si inférieur à N ()
N	Nombre de degrés de liberté du système d'EDP ()
n	Indice variable ()
p	Pression (Pa)
\widetilde{p}	Fluctuations de pression ou pression dynamique (Pa)
\widetilde{p}_1	Fluctuations de pression d'une onde à droite (Pa)
p_a	Pression atmosphérique (Pa)
r, r_+	Racines réelles d'une équation du second degré (m $\rm s^{-1})$
<u>rot</u>	Rotationnel (m^{-1})
R	Rayon de courbure de la surface libre (m)
s	Valeur propre complexe (s^{-1})
S(k)	Relation de dispersion généralisée (s^{-1})
sinh	Sinus hyperbolique ()
sign(k)	Fonction égale à ± 1 selon le signe de k ()
t	Temps (s)
T	Transposée

Tangente hyperbolique ()

tanh

4 NOTATIONS

u(x,t)	Composante d'une solution d'un système d'EDP 1D $$
u_m	Amplitude complexe d'une onde (arbitraire)
u_m^*	Complexe conjugué de u_m (arbitraire)
$u_0(x)$	Condition initiale
$u_d(x)$	Profil se propageant vers la doroite
$u_g(x)$	Profil se propageant vers la gauche
$\underline{U}(x,t)$	Vecteur des inconnues du système d'EDP 1D
\underline{U}_m	Amplitude complexe
U_n	Composantes de \underline{U}
U(x,t)	Vitesse 1D de la couche fluide m $\rm s^{-1}$
$\widetilde{U}(x,t)$	Perturbation de $U(x,t)$ m s ⁻¹
U_0	Vitesse horizontale constante (m $\rm s^{-1})$
$\underline{U}(x,z,t)$	Vitesse 2D $\underline{U} = (u, w) \text{ (m s}^{-1})$
$\underline{\widetilde{U}} = (\widetilde{u}, \widetilde{w})$	Perturbations de $\underline{U}(x,z,t)$
u(x,z,t)	Vitesse horizontale 2D (m s^{-1})
\widetilde{u}	Perturbation de u (m s ⁻¹)
1D	Unidimensionnel ()
v(x,t)	Composante d'une solution d'un système d'EDP 1D
w(x,t)	Composante d'une solution d'un système d'EDP 1D
w(x,z,t)	Vitesse verticale (m s^{-1})
$\underline{x} = (x, z)$	Coordonnées spatiales (m)
(x_0, z_0)	Coordonnées moyennes d'une particule (m)
y	Coordonnée spatiale remplaçant t (m)
α	Coefficient constant de l'équation de KdV
β	Coefficient constant de l'équation de KdV
γ	Coefficient pour la tension superficielle (N/m)
Δ	Discriminant d'une équation du second degré ()
Δ	Opérateur Laplacien (m ⁻²)

ϵ	Petit paramètre pour les petits mouvements ()
ζ	Constante pour l'équation d'Helmoltz
κ	Diffusivité de l'équation de la chaleur $(m^2 s^{-1})$
λ	Valeur propre pour la recherche de caractéristiques (m $\rm s^{-1})$
μ	Valeur propre inverse pour la recherche de caractéristiques
ho	Masse volumique (kg m^{-3})
σ	Partie réelle de s (s ⁻¹)
$\Sigma(k)$	Partie réelle de la relation de dispersion généralisée (s^{-1})
$\underline{\phi}_n$	Vecteurs propres à droite ()
$\phi(x,z,t)$	Potentiel du champ de vitesse $(m^2 s^{-1})$
$\widetilde{\phi}$	Fluctuations de ϕ (m ² s ⁻¹)
$\widetilde{\phi}_0(x,z)$	Condition initiale $(m^2 s^{-1})$
$\widetilde{\phi}_{10}$	Partie "à droite" de la condition initiale (m 2 s $^{-1}$)
$\widehat{\phi}_0(k)$	Transformée de Fourier partielle de $\widetilde{\phi}_0$ si $\Delta\widetilde{\phi}_0=0~({\rm m}^3~{\rm s}^{-1})$
$\Phi(z)$	Profil vertical de ϕ (m ² s ⁻¹)
φ	Phase de la vague ()
χ	Notation pour $\sqrt{g/h_0}$ (s ⁻¹)
$\underline{\psi}_n$	Vecteurs propres à gauche ()
$\underline{\psi}_n^T$	Vecteur ligne transposé de $\underline{\psi}_n$ ()
$\Psi(k)$	Phase pour la méthode de la phase station naire (\mathbf{s}^{-1})
ω	Pulsation, partie réele de s (s ⁻¹)
$\Omega(k)$	Relation de dispersion (s^{-1})
$\Omega_s(k)$	Relation de dispersion des ondes de surface (s^{-1})
$\Omega_a(k)$	Valeur absolue de $\Omega_s(k)$ (s ⁻¹)