AÉRODYNAMIQUE COMPRESSIBLE ET FLUIDES HÉTÉROGÈNES Petites classes et éléments de cours

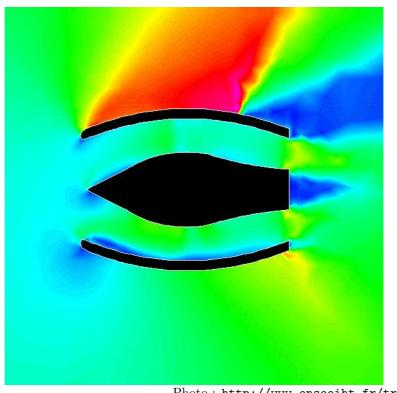


Photo: http://www.enseeiht.fr/travaux/

Olivier THUAL, INPT et X/Mécanique

31 juillet 2004

Table des matières

1	On	des sonores dans une tuyère	7
	1	Moteur de fusée et hypothèses simplificatrices	10
	2	Approximation unidimensionnelle	12
	3	Ondes sonores	14
2	Ré	gimes continus de la tuyère de Laval	15
	1	Modèle quasi-1D	18
	2	Écoulement permanent	18
	3	Vitesse du son pour un gaz parfait polytropique	20
	4	Détermination des régimes continus	20
3	On	de de détente dans un canal hydraulique	2 5
	1	Équations en eaux peu profondes	29
	2	Frontière d'un écoulement uniforme	30
	3	Onde simple de détente centrée	31
	4	Calcul des trajectoires	32
4	$\mathbf{C}\mathbf{h}$	oc droit pour un gaz parfait polytropique	35
	1	Équations de saut pour le choc droit	38
	2	Choc droit pour un gaz parfait polytropique	40

	3	Droite de Rayleigh et courbe d'Hugoniot	42
	4	Grandeurs génératrices	45
5	Choc rectiligne et tube à choc		
	1	Choc rectiligne	50
	2	Tube à choc	51
	3	Limite des grands écarts de pressions	54
6	Régime discontinus de la tuyère de Laval		
	1	Classification des régimes	59
	2	Régimes continus	61
	3	Régimes discontinus	62
	4	Choc oblique en sortie de tuyère	64
7	Détentes et chocs infinitésimaux		
	1	Choc droit infinitésimal	71
	2	Choc oblique infinitésimal	72
	3	Onde de détente infinitésimale	73
	4	Détente le long d'une paroi convexe	76
8	Détente de Prandtl-Meyer et coudes supersoniques		
	1	Détente de Prandtl-Meyer	82
	2	Coudes supersoniques	85
9	Éc	oulements permanents de perturbation	91
	1	Écoulement incompressible	95
	2	Écoulement subsonique	98
	3	Écoulement supersonique	100

10	oulements transsoniques	103				
	1	Existence d'une ligne sonique	105			
	2	Écoulement transsonique au voisinage du col	107			
11	Ém	ission du son par une sphère	111			
	1	Sphère pulsant avec une vitesse radiale quelconque	113			
	2	Pulsation harmonique de la sphère	116			
12	Pro	ppagation du son dans un milieu réactif	121			
	1	Ondes émises par un piston	124			
13 Combustion d'une goutte immobile 131						
	1	Équations de Shvab-Zeldovich	133			
	2	Vaporisation de la goutte	134			

Avant-Propos

Ce document regroupe les énoncés et corrigés d'une série de petites classes qui ont été construites dans le cadre de l'enseignement intitulé "Aérodynamique compressible" de la deuxième année de l'Ecole Polytechnique et de l'enseignement intitulé "Aérodynamique compressible et Fluides Hétérogènes" de la troisième années. Les éléments de cours utiles pour la résolution des exercies sont rassemblés au début de chaque petite classe.

Les exercices présentés dans ce recueil sont très classiques et ont été choisis pour leurs qualités pédagogiques dans l'assimilation des notions de base de l'aérodynamique compressible. Ils ont été construits à partir des ouvrages classiques de la littérature et des énoncés de petites classes de plusieurs enseignants qui sont intervenus à l'Ecole Polytechnique ou à l'ENSTA (Antoine SELLIER, Pierre BRANCHER, Frédéric DIAS, ...). Néanmoins, certaines parties, comme par exemple les "coudes supersoniques", peuvent être considérées comme des contributions originales.

La particularité de ces petites classes repose sur le fait que la taille des exercices a été calibrée pour des séances de deux heures à l'attention d'élèves ingénieurs ou de Licence n'ayant que des notions sommaires de mécanique des fluides. Chaque petite classe peut être traitée indépendamment des autres et les éléments de cours indiqués dans leur introduction sont en principe suffisants pour leur résolution.

BIBLIOGRAPHIE

- [1] A. SELLIER, "Introduction aux écoulements compressibles et aux fluides hétérogènes", Les Éditions de l'École Polytechnique, (2001).
- [2] A. SELLIER, "Aérodynamique compressible", Polycopié de l'École Polytechnique, (2004).